In molte aziende, oggi, la domanda di dati e di analisi è pervasiva. I progetti in corso riguardano molti aspetti: migliorare l’engagement dei clienti, ridurre il rischio e ottimizzare le operazioni di business
Anche le fonti di dati crescono senza sosta, con dati di tutti i tipi che provengono sia dall’interno sia dall’esterno dell’azienda. Ma se le analisi sono necessarie quasi ovunque, gli approcci attuali per svilupparle sono lenti e costosi. Per supportare queste esigenze, il moderno mondo degli analytics si è allargato oltre il tradizionale data warehouse, per diventare un ecosistema che comprende numerosi data store e piattaforme ottimizzati per diversi tipi di carichi di lavoro: data warehouse, database NoSQL, piattaforme Hadoop, di cloud storage e di streaming analytics, oltre a tecnologie come Kafka, Apache Spark e Apache Flink. Alcuni fornitori come Cloudera e MapR, stanno cercando di posizionarsi come piattaforme dati in grado di effettuare tutto questo su un singolo sistema. Inoltre, molte aziende hanno creato team di data science per concentrarsi su specifici problemi di business, che analizzano i dati su diverse piattaforme sottostanti come Spark/Hadoop, i sistemi di elaborazione dei flussi dati e i RDBMS analitici che supportano i data warehouse. È per questo che tali team operano nell’ecosistema analitico su dati presenti in più depositi, cioè in quello che sta diventando un data lake logico distribuito e non un archivio unico di dati centralizzato.
L’esigenza di scalare a basso costo - La richiesta di nuovi dati e di nuovi tipi di analisi su un alto volume di dati multi-strutturati ha fatto sorgere anche l’esigenza di scalare a basso costo, cosa che a sua volta ha innescato la rapida adozione di tecnologie come Hadoop e Apache Spark per scalare i dati e l’elaborazione analitica. Inizialmente, l’adozione di queste tecnologie è stata lenta, ma oggi sono ormai mainstream, con molti diversi tipi di analytics che vengono sviluppati nei progetti di data science, utilizzati per analizzare i dati sia in ambito big data sia negli ambienti tradizionali. I tipi di analisi intrapresi comprendono il machine learning supervisionato e non supervisionato, l’analisi dei testi, l’analisi dei grafi, il deep learning e l’intelligenza artificiale. Molto probabilmente la crescita più rapida tra questi riguarda il machine learning: quello supervisionato per classificare (prevedere) e quello non supervisionato per descrivere i modelli nei dati, per esempio per raggruppare cluster simili in gruppi nella segmentazione dei clienti. Con il machine learning supervisionato, i dati vengono prima preparati e poi alimentati in un algoritmo per addestrarlo a predire correttamente un risultato. I possibili esempi sono prevedere l’abbandono dei clienti, cioè il churn, oppure i guasti ai macchinari. In questo caso, i dati vengono spesso suddivisi in dati di addestramento e di test, con un ulteriore subset tenuto indietro per vedere come un modello si comporta su dati totalmente invisibili dopo che è stato addestrato. Vi è una quantità di algoritmi che possono essere utilizzati per le previsioni: i data scientist svilupperanno tipicamente più modelli, ognuno con un algoritmo diverso, confrontando i risultati per trovare il più accurato. Il machine learning non supervisionato si ha quando viene eseguito un algoritmo sui dati senza alcuna formazione per trovare modelli nei dati. Un buon esempio qui è il clustering per raggruppare dati analoghi o il rilevamento di associazioni per l’analisi dei basket di mercato.
Perché la data science può diventare un collo di bottiglia? -Tuttavia, gli attuali approcci allo sviluppo del modello analitico di machine learning hanno mostrato numerosi problemi. Per cominciare c’è una vera e propria carenza di data scientist qualificati che, anche se si riesce ad assumerli, diventano rapidamente preda degli head hunter. Anche lo sviluppo di modelli analitici è spesso lento, soprattutto sulle grandi piattaforme di dati sulle quali i data scientist preferiscono sviluppare tutto manualmente, scrivendo codice in linguaggi molto utilizzati come Java, R, Scala e Python. Ciò comporta che la funzione data science diventa un collo di bottiglia, con un conseguente backlog di analisi che devono ancora essere costruite. Anche il costo dello sviluppo è superiore a quello che dovrebbe o potrebbe essere perché la data science viene spesso suddivisa su persone diverse, talvolta utilizzando approcci di sviluppo incoerenti, oltre a librerie e strumenti diversi. Ciò porta a una frammentazione di competenze distribuite in maniera esigua su troppe tecnologie. Questo limita anche il riutilizzo e la condivisione di set di dati e modelli. La manutenzione diventa quindi un problema, il costo aumenta e non esiste un programma integrato di attività analitica. Tutto ciò impedisce l’agilità e aggiunge complessità. Inoltre, con il ritmo di sviluppo lento, la data science può diventare un collo di bottiglia, il che a sua volta può far sì che gli analytics già in esecuzione rallentino in quanto le persone vengono trattenute su altre attività di sviluppo connesse al backlog di cui si diceva poco sopra. Inoltre, una funzione data science frammentata ed eccessivamente complessa può anche portare a una preparazione dei dati self-service non gestita, se i team adottano approcci diversi. Ciò avviene soprattutto nel caso in cui tutto venga codificato a mano senza una linea di metadati e senza alcun modo per sapere come è stato preparato il dato. Anche la produttività e la governance soffrono, con impatti negativi sul time-to-value.
Come risolvere tutto questo? - La risposta è quella di accelerare la funzione data science automatizzando lo sviluppo di modelli predittivi. Non a caso, stanno emergendo molte nuove tecnologie di questo tipo, come per esempio DataRobot, Tellmeplus e IBM Data Science Experience. E anche Google sta percorrendo questa strada. L’automazione del machine learning consente di costruire e confrontare rapidamente modelli predittivi e permette ai business analyst che non hanno skill specifici di diventare data scientist a tutti gli effetti. Ma permette anche di integrare modelli, costruiti sia automaticamente sia in maniera personalizzata, in un programma comune di tipo campione/sfidante, in modo da coordinare e gestire tutti i progetti di machine learning da un unico punto.
Per valutare gli strumenti di automazione del machine learning, alcuni dei requisiti chiave da prendere in considerazione sono:
• Project management e allineamento con la strategia di business.
• Sviluppo e condivisione collaborativi.
• Integrazione con un catalogo di informazioni per facilitare la ricerca dei dati da parte dei data scientist.
• Dare accesso a dati sulle piattaforme dei big data e di quelli normali, all’interno o all’esterno dell’azienda.
• Supporto per una facile esplorazione e profilazione dei dati.
• Preparazione dati self-service di terze parti incorporata e integrata.
• Possibilità di automatizzare o definire manualmente i set di dati per formare e convalidare i modelli.
• Possibilità di automatizzare la selezione variabile per l’input a un algoritmo di machine learning.
• Capacità di creare, formare e convalidare automaticamente più modelli candidati usando diversi algoritmi.
• Supporto per una formazione interattiva per una maggiore precisione.
• Possibilità di includere algoritmi dalle librerie di terze parti per integrare tecnologie e formare modelli candidati da una piattaforma comune.
• Capacità di integrare modelli personalizzati costruiti in diversi linguaggi in notebook interattivi come Zeppelin e Jupyter.
• Capacità di confrontare facilmente l’accuratezza predittiva di più modelli candidati.
• Possibilità di selezionare e implementare facilmente modelli per il consumo da parte di altre applicazioni e strumenti.
• Possibilità di implementare facilmente modelli in diversi ambienti di esecuzione, per esempio in cloud, Spark, database, Hadoop o stream.
• Capacità di creare una “fabbrica” di machine learning non solo per industrializzare lo sviluppo, ma anche per automatizzare il monitoraggio della precisione del modello e la manutenzione e l’aggiornamento dei modelli esistenti.
Mike Ferguson sarà a Roma per Technology Transfer il chairman della Conferenza “Enterprise Data & Analytics Summit 2018” il 21-22 Giugno 2018. Presenterà inoltre i seminari “Progettare, costruire e gestire un Enterprise Data Lake” il 16-17 Aprile 2018 “Predictive e Advanced Analytics” il 18-19 aprile 2018, e “Enteprise Data Governance & Master Data Management” il 19-20 Giugno 2018.
L’evoluzione dell’IT tra sfide e promesse
Frank Greco
Verso la new digital economy. Quale architettura per la trasformazione digitale?
Mike Rosen
Ecco come capire il cliente. I diversi punti di vista della Business Analysis
James Robertson
Ecco come capire il cliente I diversi punti di vista della Business Analysis
Suzanne Robertson
E se il Design Sprint fosse il nuovo asso nella manica? Come risolvere grandi problemi e testare nuove idee
James Hobart
Come essere veramente data driven. L’importanza dell’architettura dati
Mike Ferguson
Il Machine Learning in azienda. Come migliorare performance e previsioni
Frank Greco
Portfolio management avanzato: Come trasformare gli investimenti in cambiamento
Chris Potts
L’imbuto e le biglie. Ovvero la metafora della produttività dei team
Sander Hoogendoorn
Dal Data Warehouse al digital business. Un’architettura di trent’anni ancora valida
Barry Devlin
Dai silos a un ecosistema analitico integrato. Un approccio per avere dati da usare su più sistemi
Mike Ferguson
Come accelerare l’innovazione in azienda. La nuova generazione dell’IT enterprise
Frank Greco
Tassonomie e ricerche. Ecco come ottenere migliori risultati
Heather Hedden
Viaggio verso il data warehouse logico
Il grande dilemma della business intelligence
Rick van der Lans
Enterprise information catalog. I requisiti per fare la scelta giusta
Mike Ferguson
La nuova era dell’analisi predittiva - Le aziende alla prova del Machine Learning
Frank Greco
Uno sguardo Agile - Per capire il passato e progettare il futuro
Arie van Bennekum
Trasformazione Agile
Se il product owner diventa un collo di bottiglia
Sander Hoogendoorn
Una Fiat o una Ferrari?
Qual è la più adatta per il business digitale?
Barry Devlin
Vincere la complessità dei dati. È l’ora dello smart data management
Mike Ferguson
Big Data e Analytics - Se il machine learning accelera anche la data science
Mike Ferguson
I dati al centro del business
Christopher Bradley
I Big Data forniscono il contesto e la ricchezza predittiva attorno alle transazioni di business Avere dati coerenti e di qualità resta fondamentale per il processo decisionale
Barry Devlin
Cosa c’è dietro l’angolo? Cinque mosse per diventare un digital leader
Jeroen Derynck
Managing information technology Gestire l’IT come un business nel business
Mitchell Weisberg
Data integration self-service Miglioramento della produttività o caos totale?
Mike Ferguson
Project manager vecchi miti e nuove realtà
Aaron Shenhar
La catena alimentare dei requisiti
Suzanne Robertson
Come diventare un’azienda data-centric
Lindy Ryan
Enterprise analytical ecosystem - Come comprendere il comportamento online dei clienti e capitalizzare il valore dei dati nell’era Big Data
Mike Ferguson
Agilità? Basta Volere
Suzanne Robertson
Ma la vostra architettura è efficace?
Mike Rosen
Se il NoSQL diventa SQL
Rick van der Lans
La data quality e l’impatto sul business
Danette McGilvray
Business analysis e regole di business By Ronald G. Ross con Gladys S.W. Lam
Ronald Ross
Usare Scrum su larga scala: cosa cambia?
Craig Larman
Le architetture per ridurre il debito tecnico
Mike Rosen
Conversando con un marziano
Suzanne Robertson
Cosa c’è di nuovo nel project management?
Aaron Shenhar
Reinventare la Business Intelligence
Barry Devlin
Il nuovo volto della business intelligence
Shaku Atre
Alla ricerca del valore tra i pomodori nell'orto
John Favaro
I big data cambiano il mercato dei Database Server
Rick van der Lans
Un “superstorm” di informazioni
Barry Devlin
I dieci step per la qualità dei dati
Danette McGilvray
Perché è meglio evitare il private cloud?
Jason Bloomberg
Leonardo da Vinci aveva ragione!
Chris Date
Mobile user experience: Come adottare una strategia sostenibile
James Hobart
Cosa significa occuparsi di architettura?
Mike Rosen
Virtualizzazione dei dati e sistemi di Business Intelligence Agili
Rick van der Lans
Modelli e linguaggi naturali, quale il modo migliore per definire i requisiti?
James Robertson
Extreme Scoping: un approccio Agile all'Edw e alla BI
Larissa Moss
BI², la Business Intelligence al quadrato
Barry Devlin
I test di regressione in ambienti legacy
Randy Rice
Le conseguenze della consumerizzazione e del Cloud
Chris Potts
Come vanno gli affari? Chiedetelo al vostro cruscotto
Shaku Atre
Organizzare team di progetto efficienti in ambienti DW/BI
Larissa Moss
Big Data, come e perché
Colin White
Business Capabilities e l'allineamento del business all'IT
Mike Rosen
Il valore della tassonomia nella ricerca delle informazioni
Zach Wahl
BI, ma il Data Warehouse è ancora necessario?
Colin White
Reinventare la Business Intelligence
Barry Devlin
Il cruscotto delle prestazioni: il nuovo volto della Business Intelligence
Shaku Atre
Modelli e processi di User acceptance testing
Randy Rice
I limiti nel gestire l'IT come un Business
Chris Potts
Le componenti fondamentali del Cloud
George Reese
Metadati e DW 2.0
Derek Strauss
BI Open Source: basso costo e alto valore?
Jos van Dongen
Semplicità e requisiti
Suzanne Robertson
Business intelligence e analisi testuale
Bill Inmon
Extreme Scoping™: approcci agili al DW e alla BI
Larissa Moss
Dalla BI a un'architettura IT di livello Enterprise
Barry Devlin
Ambiente efficiente di ricerca di informazioni
James Hobart
Il Business deve trainare la Strategia IT
Chris Potts
Web database: la questione MapReduce (seconda parte)
Colin White
Web database: la questione MapReduce
Colin White
Misura delle prestazioni. I sette comandamenti
Harry Chapman
Le dieci cose che un architetto deve fare per creare valore
Mike Rosen
Sviluppare applicazioni a prova di sicurezza
Ken van Wyk
The ECM Landscape in 2008
Alan Pelz-Sharpe
Ma chi sono gli operatori dell’informazione?
Colin White
Qualità dell’informazione e trasformazione del management
Larry English
Classificazione sistematica delle informazioni
Zach Wahl
L’uso intensivo del Web nelle applicazioni di Bi
Colin White
Enterprise Search
Theresa Regli
La forza dell'astrazione
Steve Hoberman
La strada verso una BI pervasiva
Cindi Howson
Soa, una strategia di test
Randy Rice
Verso una BI più semplice e a minor costo
Colin White
I contenuti “Killer” del Web
Gerry McGovern
Sviluppo iterativo del software per i Dw
Larissa Moss
Qualità delle Informazioni e Datawarehousing
Larry English
Lo scenario Ecm 2008
Alan Pelz-Sharpe
La nascita del Web 3.0
John Kneiling
Documentazione: il dossier del crimine
Suzanne Robertson
L’impatto del Web 2.0 sui portali delle imprese
Colin White
Le tecniche vincenti di IT Management
Ken Rau
Web di successo se si conosce il cliente
Gerry McGovern
Un approccio alla BI incentrato sui processi
Colin White
Integrare Master Data Management e BI (Parte Seconda)
Mike Ferguson
Integrare Master Data Management e BI (Parte Prima)
Mike Ferguson
Il Project Manager è una Tata
Suzanne Robertson
Web di successo se si conosce il cliente
Gerry McGovern
L'informazione personalizzata
Colin White
La Tassonomia dell'Impresa
Zach Wahl
Managed Meta Data Environment (II parte)
David Marco
Managed Meta Data Environment
David Marco
Migliorare le applicazioni dell'impresa con Web 2.0
James Hobart
La Balanced Scorecard migliora la Performance dell'IT
Harry Chapman
La fusione dei processi dell'impresa grazie a Soa (II parte)
Max Dolgicer
La fusione dei processi dell'impresa grazie a SOA (I parte)
Max Dolgicer
Volere è Potere, in Ogni Senso
Suzanne Robertson
Dimostrate con i numeri il valore dei contenuti del web
Gerry McGovern
Il Back-end della pianificazione strategica dell'It
Ken Rau
L'audit delle prescrizioni di progetto (II parte)
Suzanne Robertson
L'audit delle prescrizioni di progetto (I parte)
Suzanne Robertson
Il Processo di gestione delle informazioni
Ted Lewis
I requisiti come strumento di gestione dei progetti
Suzanne Robertson
Il futuro è nel contenuto killer del web
Gerry McGovern
Alla ricerca del valore tra i pomodori nell'orto
John Favaro
Rilevare i costi sulla base delle attività
Ken Rau
Un percorso verso l'impresa intelligente (II parte)
Mike Ferguson
Un percorso verso l'impresa intelligente (I parte)
Mike Ferguson
Il Data Store Operativo: un lavoro di martello
Claudia Imhoff
Il data warehouse orientato all'impresa
Michael Schmitz
Dieci punti chiave per realizzare balanced scorecard di successo
Harry Chapman
Content management: i contenuti al primo posto
Gerry McGovern
Applicazioni Web ad alta disponibilità
John Kneiling
Il 2004, sarà l'anno in cui abbandoneremo html?
James Hobart
La tecnologia EII ripropone il data warehousing virtuale?
Colin White
Volere è Potere, in Ogni Senso
Suzanne Robertson
Realizzare il CPM e l'integrazione della BI
Mike Ferguson
Tutti i punti della FPA
Koni Thompson
Requiem per il Portale?
Colin White
Business Intelligence: dalla teoria alla realtà (II parte)
Shaku Atre
Business Intelligence: dalla teoria alla realtà (I parte)
Shaku Atre
I portali Corporate e di E-business: la nuova generazione del posto di lavoro
Mike Ferguson
I 10 errori da evitare nella realizzazione di un Meta Data Repository (II Parte)
David Marco
I 10 errori da evitare nella realizzazione di un Meta Data Repository (I parte)
David Marco
Usare i modelli per acquisire l'esperienza di progettazione
James Hobart
Realizzare l'Impresa Intelligente
Colin White
.NET or J2EE - Choosing the Right Web Services Framework
John Kneiling
Progettare Applicazioni Mobili di Successo
James Hobart
La Sociologia del Progetto: Identificare e Coinvolgere tutti i Partecipanti
Suzanne Robertson
Integrare la Business Intelligence nell'Impresa (II parte)
Mike Ferguson
Integrare la Business Intelligence nell'Impresa (I parte)
Mike Ferguson
L'Evoluzione del Portale di e-Business (II parte)
Colin White
L'Evoluzione del Portale di e-Business (I parte)
Colin White
Il Consulente WebEAI: Servizi Web, XML e l'Impresa
John Kneiling
Data Mining: Come Gestire le Relazioni con i Clienti Secondo i Principi del CRM
Weaver James